Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Biophysics of α-synuclein induced membrane remodelling.

α-Synuclein is an intrinsically disordered protein whose aggregation is a hallmark of Parkinson's disease. In neurons, α-synuclein is thought to play important roles in mediating both endo- and exocytosis of synaptic vesicles through interactions with either the lipid bilayer or other proteins. Upon membrane binding, the N-terminus of α-synuclein forms a helical structure and inserts into the hydrophobic region of the outer membrane leaflet. However, membrane structural changes induced by α-synuclein are still largely unclear. Here we report a substantial membrane area expansion induced by the binding of α-synuclein monomers. This measurement is accomplished by observing the increase of membrane area during the binding of α-synuclein to pipette-aspirated giant vesicles. The extent of membrane area expansion correlates linearly with the density of α-synuclein on the membrane, revealing a constant area increase induced by the binding per α-synuclein molecule. The area expansion per synuclein is found to exhibit a strong dependence on lipid composition, but is independent of membrane tension and vesicle size. Fragmentation or tubulation of the membrane follows the membrane expansion process. However, contrary to BAR domain proteins, no distinct tubulation-transition density can apparently be identified for α-synuclein, suggesting a more complex membrane curvature generation mechanism. Consideration of α-synuclein's membrane binding free energy and biophysical properties of the lipid bilayer leads us to conclude that membrane expansion by α-synuclein results in thinning of the bilayer. These membrane thinning and tubulation effects may underlie α-synuclein's role in mediating cell trafficking processes such as endo- and exocytosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app