Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

An electrochemical impedance spectroscopy investigation of the overpotentials in Li-O2 batteries.

Lithium-O2 (Li-O2) batteries are currently limited by a large charge overpotential at practically relevant current densities, and the origin of this overpotential has been heavily debated in the literature. This paper presents a series of electrochemical impedance measurements suggesting that the increase in charge potential is not caused by an increase in the internal resistance. It is proposed that the potential shift is instead dictated by a mixed potential of parasitic reactions and Li2O2 oxidation. The measurements also confirm that the rapid potential loss near the end of discharge ("sudden death") is explained by an increase in the charge transport resistance. The findings confirm that our theory and conclusions in ref 1, based on experiments on smooth small-area glassy carbon cathodes, are equally valid in real Li-O2 batteries with porous cathodes. The parameter variations performed in this paper are used to develop the understanding of the electrochemical impedance, which will be important for further improvement of the Li-air battery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app