Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effective half-lives of ¹³⁷Cs in giant butterbur and field horsetail, and the distribution differences of potassium and ¹³⁷Cs in aboveground tissue parts.

Concentrations of (137)Cs and (40)K in different tissues of edible wild herbaceous plants, that is, leaf blade and petiole for giant butterbur (Petasites japonicas (Siebold et Zucc.) Maxim.), and leaf, stem and strobilus for fertile shoot of field horsetail (Equisetum arvense L.) were measured in 2012-2014 to clarify the effect in Japan from the Fukushima Daiichi Nuclear Power Plant accident. The concentrations of (137)Cs decreased with time with effective half-lives of ca. 450 d and 360 d for giant butterbur and field horsetail, respectively. The ANOVA test revealed that (40)K and (137)Cs distributions in leaf blade and petiole for giant butterbur and leaf and stem for field horsetail were different. Therefore, other plants, leaf and stem for Japanese knotweed (Fallopia japonica (Houtt.) Ronse Decr.) and Canada goldenrod (Solidago canadensis L.), and leaf blade and petiole for gingko (Ginkgo biloba L.) and Someiyoshino cherry (Cerasus × yedoensis (Matsum.) A.V.Vassil. 'Somei-yoshino') were collected from the same sampling field and their (137)Cs and (40)K concentrations were compared to those in the giant butterbur and field horsetail parts. For (137)Cs, concentrations in leaf blade and leaf parts were 1.1-6.0 times higher than those in petiole and stem parts for all six plants. On the other hand, (40)K concentrations in leaf blade and leaf parts were 0.40-0.97 of those observed in petiole and stem parts. Discrimination ratios of (40)K/(137)Cs of leaf blade to petiole or leaf to stem were then calculated and they ranged from 0.09 to 0.57. These results suggested that Cs and K did not behave similarly in these plants. Thus, to understand the radiocesium fate in plants, K measurement results should not be used as an analog for Cs behavior although Cs is known to have a similar chemical reactivity to that of K.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app