Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cardioprotection of recombinant human MG53 protein in a porcine model of ischemia and reperfusion injury.

Ischemic heart disease is a leading cause of death in human population and protection of myocardial infarction (MI) associated with ischemia-reperfusion (I/R) remains a challenge. MG53 is an essential component of the cell membrane repair machinery that protects injury to the myocardium. We investigated the therapeutic value of using the recombinant human MG53 (rhMG53) protein for treatment of MI. Using Langendorff perfusion of isolated mouse heart, we found that I/R caused injury to cardiomyocytes and release of endogenous MG53 into the extracellular solution. rhMG53 protein was applied to the perfusion solution concentrated at injury sites on cardiomyocytes to facilitate cardioprotection. With rodent models of I/R-induced MI, we established the in vivo dosing range for rhMG53 in cardioprotection. Using a porcine model of angioplasty-induced MI, the cardioprotective effect of rhMG53 was evaluated. Intravenous administration of rhMG53, either prior to or post-ischemia, reduced infarct size and troponin I release in the porcine model when examined at 24h post-reperfusion. Echocardiogram and histological analyses revealed that the protective effects of rhMG53 observed following acute MI led to long-term improvement in cardiac structure and function in the porcine model when examined at 4weeks post-operation. Our study supports the concept that rhMG53 could have potential therapeutic value for treatment of MI in human patients with ischemic heart diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app