Add like
Add dislike
Add to saved papers

Computational methods and opportunities for phosphorylation network medicine.

Protein phosphorylation, one of the most ubiquitous post-translational modifications (PTM) of proteins, is known to play an essential role in cell signaling and regulation. With the increasing understanding of the complexity and redundancy of cell signaling, there is a growing recognition that targeting the entire network or system could be a necessary and advantageous strategy for treating cancer. Protein kinases, the proteins that add a phosphate group to the substrate proteins during phosphorylation events, have become one of the largest groups of 'druggable' targets in cancer therapeutics in recent years. Kinase inhibitors are being regularly used in clinics for cancer treatment. This therapeutic paradigm shift in cancer research is partly due to the generation and availability of high-dimensional proteomics data. Generation of this data, in turn, is enabled by increased use of mass-spectrometry (MS)-based or other high-throughput proteomics platforms as well as companion public databases and computational tools. This review briefly summarizes the current state and progress on phosphoproteomics identification, quantification, and platform related characteristics. We review existing database resources, computational tools, methods for phosphorylation network inference, and ultimately demonstrate the connection to therapeutics. Finally, many research opportunities exist for bioinformaticians or biostatisticians based on developments and limitations of the current and emerging technologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app