Add like
Add dislike
Add to saved papers

Effects of controlled-release fertilizer on leaf area index and fruit yield in high-density soilless tomato culture using low node-order pinching.

To further development of a simplified fertigation system using controlled-release fertilizers (CRF), we investigated the effects of differing levels of fertilizers and plant density on leaf area index (LAI), fruit yields, and nutrient use in soilless tomato cultures with low node-order pinching and high plant density during spring-summer (SS), summer-fall (SF), and fall-winter (FW) seasons. Plants were treated with 1 of 3 levels of CRF in a closed system, or with liquid fertilizer (LF) with constant electrical conductivity (EC) in a drip-draining system. Two plant densities were examined for each fertilizer treatment. In CRF treatments, LAI at pinching increased linearly with increasing nutrient supply for all cropping seasons. In SS, both light interception by plant canopy at pinching and total marketable fruit yield increased linearly with increasing LAI up to 6 m(2) · m(-2); the maximization point was not reached for any of the treatments. In FW, both light interception and yield were maximized at an LAI of approximately 4. These results suggest that maximizing the LAI in SS and FW to the saturation point for light interception is important for increasing yield. In SF, however, the yield maximized at an LAI of approximately 3, although the light interception linearly increased with increasing LAI, up to 4.5. According to our results, the optimal LAI at pinching may be 6 in SS, 3 in SF, and 4 in FW. In comparing LAI values with similar fruit yield, we found that nutrient supply was 32-46% lower with the CRF method than with LF. In conclusion, CRF application in a closed system enables growers to achieve a desirable LAI to maximize fruit yield with a regulated amount of nutrient supply per unit area. Further, the CRF method greatly reduced nutrient use without decreasing fruit yield at similar LAIs, as compared to the LF method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app