Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Low-level laser therapy associated with high intensity resistance training on cardiac autonomic control of heart rate and skeletal muscle remodeling in wistar rats.

BACKGROUND AND OBJECTIVE: Phototherapy plus dynamic exercise can enhance physical performance and improve health. The aim of our study was to evaluate the effect of low-level laser therapy (LLLT) associated with high intensity resistance training (HIT) on cardiac autonomic and muscle metabolic responses in rats.

STUDY DESIGN/MATERIALS AND METHODS: Forty Wistar rats were randomized into 4 groups: sedentary control (CG), HIT, LLLT and HIT + LLLT. HIT was performed 3 times/week for 8 weeks with loads attached to the tail of the animal. The load was gradually increased by 10% of body mass until reaching a maximal overload. For LLLT, irradiation parameters applied to the tibialis anterior (TA) muscle were as follows: infrared laser (780 nm), power of 15 mW for 10 seconds, leading to an irradiance of 37.5 mW/cm(2), energy of 0.15 J per point and fluency of 3.8 J/cm(2). Blood lactate (BL), matrix metalloproteinase gelatinase A (MMP(-2)) gene expression and heart rate variability (HRV) indices were performed.

RESULTS: BL significantly increased after 8-weeks for HIT, LLLT and HIT + LLLT groups. However, peak lactate when normalized by maximal load was significantly reduced for both HIT and HIT + LLLT groups (P<0.05). MMP-2 in the active form was significantly increased after HIT, LLLT and HIT + LLLT compared tom the CG (P<0.05). There was a significant reduction in low frequency [LF (ms(2))] and increase in high frequency [HF (un)] and HF (ms(2))] for the HIT, LLLT and HIT + LLLT groups compared with the CG (P < 0.05). However, the LF/HF ratio was further reduced in the LLLT and HIT + LLLT groups compared to the CG and HIT group (P < 0.05).

CONCLUSION: These results provide evidence for the positive benefits of LLLT and HIT with respect to enhanced muscle metabolic and cardiac autonomic function in Wistar rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app