Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Different effects of LDH-A inhibition by oxamate in non-small cell lung cancer cells.

Oncotarget 2014 December 16
Higher rate of glycolysis has been long observed in cancer cells, as a vital enzyme in glycolysis, lactate dehydrogenase A (LDH-A) has been shown with great potential as an anti-cancer target. Accumulating evidence indicates that inhibition of LDH-A induces apoptosis mediated by oxidative stress in cancer cells. To date, it's still unclear that whether autophagy can be induced by LDH-A inhibition. Here, we investigated the effects of oxamate, one classic inhibitor of LDH-A in non-small cell lung cancer (NSCLC) cells as well as normal lung epithelial cells. The results showed that oxamate significantly suppressed the proliferation of NSCLC cells, while it exerted a much lower toxicity in normal cells. As previous studies reported, LDH-A inhibition resulted in ATP reduction and ROS (reactive oxygen species) burst in cancer cells, which lead to apoptosis and G2/M arrest in H1395 cells. However, when being exposed to oxamate, A549 cells underwent autophagy as a protective mechanism against apoptosis. Furthermore, we found evidence that LDH-A inhibition induced G0/G1 arrest dependent on the activation of GSK-3β in A549 cells. Taken together, our results provide useful clues for targeting LDH-A in NSCLC treatment and shed light on the discovery of molecular predictors for the sensitivity of LDH-A inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app