Add like
Add dislike
Add to saved papers

The Anti-Nociception Effect of Dezocine in a Rat Neuropathic Pain Model.

The treatment of neuropathic pain (NP) currently remains clinically challenging. In an attempt to identify novel targets of known opioids, we found that dezocine, a non-addictive opioid, inhibits norepinephrine and serotonin reuptake through their transporter proteins which open the potential for dezocine to manage NP. In the present study, the effect of dezocine on NP was observed in a rat model of chronic constriction injury (CCI). The paw withdrawal latency (PWL) and paw withdrawal threshold (PWT) were used to evaluate thermal hyperalgesia and mechanic allodynia for nociceptive response. PWL and PWT tests were performed at 11:00 AM starting from 1 day before CCI surgery and 1, 3, 7, 10 days after right sciatic nerve ligation in the presence or absence of daily intraperitoneal injection of dezocine. The results demonstrated that the CCI-induced thermal and mechanical pain hypersensitivity was attenuated by dezocine significantly and persistently without sign of tolerance, indicating that dezocine could be an alternative medication for the treatment of NP. Clinical trial to confirm such discovery is warranted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app