Add like
Add dislike
Add to saved papers

Resveratrol attenuates intermittent hypoxia-induced insulin resistance in rats: involvement of Sirtuin 1 and the phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT pathway.

Obstructive sleep apnea can induce chronic intermittent hypoxia (CIH) during sleep and is associated with obesity and diabetes. Resveratrol (RSV), a polyphenolic phytoalexin, can regulate glucose metabolism, thereby reducing insulin resistance. The present study aimed to assess whether RSV attenuates CIH-induced insulin resistance in rats and the underlying mechanisms. A total of 40 rats were randomly assigned into five groups: i) Control; ii) subjected to CIH only; iii) subjected to CIH and treated with 3 mg/kg/day of RSV; iv) subjected to CIH and treated with 30 mg/kg/day of RSV; v) subjected to CIH and treated with 60 mg/kg/day of RSV. All animals were sacrificed following 28 days of treatment. Subsequently, the blood and livers were harvested and blood insulin and glucose levels were measured. Levels of sirtuin (Sirt) 1, insulin receptor (InsR) and glucose transporter 2 (Glut2) in the liver were measured. RSV treatment was demonstrated to suppress weight gain and improve hepatic morphology. RSV treatment also significantly reduced the homeostasis model assessment estimate of insulin resistance of the rats exposed to CIH. This effect occurred in a dose-dependent manner. RSV significantly upregulated liver Sirt1 levels and inhibited InsR and Glut2 expression in the liver. Additionally, RSV activated the phosphorylation of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and AKT. The present study demonstrates that RSV prevents CIH-induced insulin resistance in rats. Upregulation of Sirt1 and activation of PI3K/AKT signaling may be involved in this process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app