Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chondrogenic differentiation of ChM-I gene transfected rat bone marrow-derived mesenchymal stem cells on 3-dimensional poly (L-lactic acid) scaffold for cartilage engineering.

We have explored the role of Chondromodulin-I (ChM-I) in chondrogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) in 3-dimensional (3D) scaffold for cartilage tissue engineering. BMSCs of Sprague Dawley (SD) rats were cultured on poly-(L-lactic acid) [PLLA] scaffolds with different pore sizes (80-200 μm, 200-450 μm) with or without surface modification by chitosan. Cell viability, proliferation, and morphology were measured using confocal microscope and the CCK-8 method. Untransfected BMSCs, BMSCs expressing pcDNA3.1(+), BMSCs expressing plasmid pcDNA3.1 (+)/ChM-I were cultured on 3D scaffolds in standard growth medium or transforming growth factor-β1 (TGF-β1) supplemented chondrogenic induction medium in vitro for 3 weeks and the expression of collagen type II was determined. Cell-scaffolds constructs were implanted subcutaneously for 3 months in vivo. BMSCs had a higher viability and proliferation in PLLA scaffolds of pore size 200-450 μm than that of 80-200 μm, and surface modification with chitosan did not enhance cell attachment. The ChM-I gene enhanced chondrogenesis and increased collagen type II synthesis. Immunohistochemistry from in vivo study showed enhanced cartilage regeneration in BMSCs expressing pcDNA3.1 (+)/ChM-I on 3D PLLA scaffolds. It also demonstrated that TGF-β1 might promote chondrogenesis of rat BMSCs by synergizing with the ChM-I gene. ChM-I could be beneficial to future applications in cartilage repair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app