Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inactivation of brain Cofilin-1 by age, Alzheimer's disease and γ-secretase.

Rapid remodeling of the actin cytoskeleton in the pre- and/or post-synaptic compartments is responsible for the regulation of neuronal plasticity,which is an important process for learning and memory. Cofilin1 plays an essential role in these processes and a dysregulation of its activity was associated with the cognitive decline observed during normal aging and Alzheimer's disease (AD). To understand the mechanism(s) regulating Cofilin1 activity we evaluated changes occurring with regard to Cofilin1 and its up-stream regulators Lim kinase-1 (LIMK1) and Slingshot phosphatase-1 (SSH1) in (i) human AD brain, (ii) 1-, 4-, and 10-months old APP/PS1 mice, (iii) wildtype 3-, 8-, 12-, 18- and 26-months old mice, as well as in cellular models including (iv) mouse primary cortical neurons (PCNs, cultured for 5, 10, 15 and 20 days in vitro) and (v) mouse embryonic fibroblasts (MEF). Interestingly,we found an increased Cofilin1 phosphorylation/inactivation with age and AD pathology, both in vivo and in vitro. These changes were associated with a major inactivation of SSH1. Interestingly, inhibition of ã-secretase activity with Compound-E (10 ìM) prevented Cofilin1 phosphorylation/inactivation through an increase of SSH1 activity in PCNs. Similarly, MEF cells double knock-out for ã-secretase catalytic subunits presenilin-1 and -2(MEFDKO) showed a strong decrease of both Cofilin1 and SSH1 phosphorylation,which were rescued by the over expression of human ã-secretase. Together, these results shed new light in understanding the molecular mechanisms promoting Cofilin1 dysregulation, both during aging and AD. They further have the potential to impact the development of therapies to safely treat AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app