Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Muscle inactivity is adversely associated with biomarkers in physically active adults.

PURPOSE: While the lack of muscular activity is a proposed trigger for metabolic alterations, this association has not been directly measured. We examined the associations between EMG-derived muscle inactivity and activity patterns and cardiometabolic biomarkers in healthy, physically active adults.

METHODS: Data for this cross-sectional study were pooled from two studies (EMG24 and InPact), resulting in a sample of 150 individuals without known chronic diseases and with high-quality EMG data (female n = 85, male n = 65, age = 38.8 ± 10.6 yr, body mass index = 23.8 ± 3.1 kg·m⁻²). EMG was measured during one to three typical weekdays using EMG shorts, measuring quadriceps and hamstring muscle EMG. Muscle inactivity time and moderate- to vigorous-intensity muscle activity were defined as EMG amplitude below that of standing still and above that of walking 5 km·h⁻¹, respectively. Blood pressure index, waist circumference, fasting plasma glucose, HDL cholesterol, and triglycerides were measured, and long-term exercise behaviors were assessed by questionnaire.

RESULTS: In a group of physically active participants, muscles were inactive for 65.2% ± 12.9% of the measurement time in an average of 24.1 ± 9.8-s periods. Compared to those in the lowest muscle inactivity quartile (<55.5% of measurement time), those in the highest quartile (≥74.8% of measurement time) had 0.32 mmol·L⁻¹ lower HDL cholesterol (P < 0.05) and 0.30 mM higher triglycerides (P < 0.05) independent of muscle's moderate- to vigorous-intensity activity.

CONCLUSIONS: Clinically significant differences in HDL cholesterol and triglycerides were found, favoring participants having low muscle inactivity time, independent of moderate- to vigorous-intensity muscle activity. Even physically active individuals may benefit from light-intensity activities that reduce ubiquitous muscle inactivity time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app