Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The PDZ-containing unconventional myosin XVIIIA regulates embryonic muscle integrity in zebrafish.

Myosin XVIIIA, or MYO18A, is a unique PDZ domain-containing unconventional myosin and is evolutionarily conserved from Drosophila to vertebrates. Although there is evidence indicating its expression in the somites, whether it regulates muscle function remains unclear. We show that the two zebrafish myo18a genes (myo18aa and myo18ab) are predominantly expressed at somite borders during early developmental stages. Knockdown of these genes or overexpression of the MYO18A PDZ domain disrupts myofiber integrity, induces myofiber lesions, and compromises the localization of dystrophin, α-dystroglycan (α-DG) and laminin at the myotome boundaries. Cell transplantation experiments indicate that myo18a morphant myoblasts fail to form elongated myofibers in the myotomes of wild-type embryos, which can be rescued by the full-length MYO18A protein. These results suggest that MYO18A likely functions in the adhesion process that maintains the stable attachment of myofibers to ECM (extracellular matrix) and muscle integrity during early development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app