Add like
Add dislike
Add to saved papers

Similar increases in strength after short-term resistance training due to different neuromuscular adaptations in young and older men.

This study investigated whether differences in neuromuscular performance and muscle hypertrophy occur between young and older men. Twenty-three young (29 ± 9 years) and 26 older men (64 ± 8 years) completed 10 weeks of high-volume, medium load "hypertrophic" resistance training with low frequency (twice per week) with 10 young (34 ± 11 years) and 11 older men (65 ± 3 years) acting as nontraining control subjects. Training consisted of 2-5 sets of 8-14 repetitions (1- to 2-minute rest). Lower-limb dynamic (leg press) and isometric maximum leg extension force, as well as lower-limb lean mass and vastus lateralis cross-sectional area were assessed before and after the training period. Training led to significant increases in 1 repetition maximum (1RM) leg press performance in both training groups (young: 13 ± 7%, p < 0.001; older: 14 ± 9%, p < 0.001). Performance improvements were accompanied by increased muscle activation, assessed by voluntary activation level (29 ± 51%, p ≤ 0.05) and electromyography amplitude (35 ± 51%, p < 0.01) in older men only. Conversely, only young men showed significantly increased lower-limb lean mass (2.4 ± 2.5%, p < 0.01). Furthermore, increases in 1RM performance and lower-limb lean mass were significantly related in young men only (r = 0.524, p = 0.01, n = 23). In conclusion, although high-volume, medium load "hypertrophic" resistance training may induce similar improvements in strength between young and older men, it appears that different mechanisms underpin these improvements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app