Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cell fate regulated by nuclear factor-κB- and activator protein-1-dependent signalling in human melanocytes exposed to ultraviolet A and ultraviolet B.

BACKGROUND: Ultraviolet (UV) radiation constitutes an important risk factor for malignant melanoma, but the wavelength responsible for the initiation of this disease is not fully elucidated. Solar UV induces multiple signalling pathways that are critical for initiation of apoptotic cell death as a cellular defence against malignant transformation.

OBJECTIVES: To evaluate the involvement of the transcription factors nuclear factor (NF)-κB and activator protein (AP)-1 in the signalling pathways induced by UVA or UVB irradiation in human melanocytes.

METHODS: Primary cultures of normal human melanocytes were irradiated with UVA or UVB, and the concomitant DNA damage and redox alterations were monitored. The resulting activation of the NF-κB and AP-1 signalling pathways and subsequent apoptosis were studied.

RESULTS: UVB irradiation causes DNA damage detected as formation of cyclobutane pyrimidine dimers, while UVA induces increased levels of 8-hydroxydeoxyguanosine and lipid peroxidation. UVA and UVB initiate phosphorylation of c-Jun N-terminal protein kinase and extracellular signal-regulated kinase, and the apoptosis signalling pathways converge into a common mechanism. Downregulation of c-Jun suppresses AP-1-mediated signalling and prevents apoptosis upstream of lysosomal and mitochondrial membrane permeabilization, whereas inhibition of NF-κB by SN50 increases apoptosis.

CONCLUSIONS: We conclude that AP-1 induces proapoptotic signalling, whereas NF-κB is a key antiapoptotic/prosurvival factor in both UVA- and UVB-induced cellular damage in human melanocytes, which might in turn impact melanoma development and progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app