Add like
Add dislike
Add to saved papers

Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls.

Plant Journal 2014 September
Drought negatively impacts symbiotic nitrogen fixation (SNF) in Cicer arietinum L. (chickpea), thereby limiting yield potential. Understanding how drought affects chickpea nodulation will enable the development of strategies to biotechnologically engineer chickpea varieties with enhanced SNF under drought conditions. By analyzing carbon and nitrogen metabolism, we studied the mechanisms of physiological adjustment of nitrogen fixation in chickpea plants nodulated with Mesorhizobium ciceri during both drought stress and subsequent recovery. The nitrogenase activity, levels of several key carbon (in nodules) and nitrogen (in both nodules and leaves) metabolites and antioxidant compounds, as well as the activity of related nodule enzymes were examined in M. ciceri-inoculated chickpea plants under early drought stress and subsequent recovery. Results indicated that drought reduced nitrogenase activity, and that this was associated with a reduced expression of the nifK gene. Furthermore, drought stress promoted an accumulation of amino acids, mainly asparagine in nodules (but not in leaves), and caused a cell redox imbalance in nodules. An accumulation of organic acids, especially malate, in nodules, which coincided with the decline of nodulated root respiration, was also observed under drought stress. Taken together, our findings indicate that reduced nitrogenase activity occurring at early stages of drought stress involves, at least, the inhibition of respiration, nitrogen accumulation and an imbalance in cell redox status in nodules. The results of this study demonstrate the potential that the genetic engineering-based improvement of SNF efficiency could be applied to reduce the impact of drought on the productivity of chickpea, and perhaps other legume crops.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app