Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Establishment of a healthy human range for the whole blood "OX40" assay for the detection of antigen-specific CD4+ T cells by flow cytometry.

BACKGROUND: Clinical investigation of antigen-specific T cells in potentially immunodeficient patients is an important and often challenging aspect of patient diagnostic work up. Methods for detection of microbial exposure to the T-cell compartment exist but are laborious and time consuming. Recently, a whole blood technique involving flow cytometry and detection of CD25 and OX40 (CD134) expression on the surface of activated CD4+ T cells was shown to be accurate and concordant when compared with more traditional methods of antigen-specific T-cell detection.

METHODS: Whole heparinized blood was collected from healthy donors and set up using the "OX40" assay to detect antigen-specific CD4+ T-cell responses to Varicella Zoster Virus, Epstein-Barr Virus (EBV), Cytomegalovirus, Candida albicans, and Streptococcus pneumoniae.

RESULTS: The "OX40" assay technique was clinically validated for routine use in an NHS clinical immunology laboratory by analysis of incubation length (40-50 h), sample transport time (up to 24 h at room temperature), concordance with serology testing, proliferation and interferon-gamma production. In addition, 63 healthy controls (age range 21-78) were tested for responses to generate a healthy control reference range.

CONCLUSIONS: The OX40 assay, as presented in this report, represents an economical, rapid, robust whole blood technique to detect antigen-specific T cells, which is suitable for clinical immunology diagnostic laboratory use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app