Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Acylated phenylethanoid glycosides, echinacoside and acteoside from Cistanche tubulosa, improve glucose tolerance in mice.

Acylated phenylethanoid glycosides, echinacoside (1) and acteoside (2), principal constituents in stems of Cistanche tubulosa (Orobanchaceae), inhibited the increase in postprandial blood glucose levels in starch-loaded mice at doses of 250-500 mg/kg p.o. These compounds (1 and 2) also significantly improved glucose tolerance in starch-loaded mice after 2 weeks of continuous administration at doses of 125 and/or 250 mg/kg/day p.o. without producing significant changes in body weight or food intake. In addition, several constituents from C. tubulosa, including 1 (IC50 = 3.1 μM), 2 (1.2 μM), isoacteoside (3, 4.6 μM), 2'-acetylacteoside (4, 0.071 μM), tubulosides A (5, 8.8 μM) and B (9, 4.0 μM), syringalide A 3-O-α-L-rhamnopyranoside (10, 1.1 μM), campneoside I (13, 0.53 μM), and kankanoside J1 (14, 9.3 μM), demonstrated potent rat lens aldose reductase inhibitory activity. In particular, the potency of compound 4 was similar to that of epalrestat (0.072 μM), a clinical aldose reductase inhibitor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app