Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Molecular evolution of GPCRs: CRH/CRH receptors.

Corticotrophin-releasing hormone (CRH) is the pivotal neuroendocrine peptide hormone associated with the regulation of the stress response in vertebrates. However, CRH-like peptides are also found in a number of invertebrate species. The origin of this peptide can be traced to a common ancestor of lineages leading to chordates and to arthropods, postulated to occur some 500 million years ago. Evidence indicates the presence of a single CRH-like receptor and a soluble binding protein system that acted to transduce and regulate the actions of the early CRH peptide. In vertebrates, genome duplications led to the divergence of CRH receptors into CRH1 and CRH2 forms in tandem with the development of four paralogous ligand lineages that included CRH; urotensin I/urocortin (Ucn), Ucn2 and Ucn3. In addition, taxon-specific genome duplications led to further local divergences in CRH ligands and receptors. Functionally, the CRH ligand-receptor system evolved initially as a molecular system to integrate early diuresis and nutrient acquisition. As multicellular organisms evolved into more complex forms, this ligand-receptor system became integrated with the organismal stress response to coordinate homoeostatic challenges with internal energy usage. In vertebrates, CRH and the CRH1 receptor became associated with the hypothalamo-pituitary-adrenal/interrenal axis and the initial stress response, whereas the CRH2 receptor was selected to play a greater role in diuresis, nutrient acquisition and the latter aspects of the stress response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app