Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chemical exchange saturation transfer MRI using intermolecular double-quantum coherences with multiple refocusing pulses.

Chemical exchange saturation transfer (CEST) provides a new type of image contrast in MRI. Due to the intrinsically low CEST effect, new and improved experimental techniques are required to achieve reliable and quantitative CEST images. In the present work, we proposed a novel and more sensitive CEST acquisition approach, based on the intermolecular double-quantum coherence with a module of multiple refocusing pulses (iDQC-MRP). Experiments were performed on creatine and egg white phantoms using a Varian 7T animal MRI scanner. The iDQC-MRP CEST technique showed a substantial enhancement in CEST and nuclear Overhauser enhancement (NOE) signal intensities, compared to the standard single-quantum coherence approach. In addition, the iDQC-MRP approach increased the signal-to-noise ratio of acquired saturation images, compared to the conventional iDQC approach. The new iDQC-MRP CEST sequence provides a promising way for exploiting in vivo CEST and NOE imaging applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app