Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Reciprocal disruption of neuronal signaling and Aβ production mediated by extrasynaptic NMDA receptors: a downward spiral.

It is becoming increasingly clear that aberrant neuronal activity can be the cause and the result of amyloid beta production. Synaptic activation facilitates non-amyloidogenic processing of amyloid precursor protein (APP) and cell survival, primarily through synaptic NMDA receptors (NMDARs) and perhaps specifically those containing GluN2A-subunits. In contrast, extrasynaptic and GluN2B-containing NMDARs promote beta-secretase cleavage of APP into amyloid-beta (Aβ). The opposing nature of these NMDAR populations is reflected in their control over cell survival and death pathways. Subtle changes in glutamate homeostasis may shift the balance between these pathways and could play a role in Alzheimer's disease (AD). Indeed, Aβ production, regional loss of brain connectivity and neurodegeneration correlate with neuronal activity in AD patients. From another perspective, Aβ oligomers (Aβo) alter neuronal signaling through several mechanisms involving NMDARs and intracellular calcium mishandling. While Aβo affect multiple receptors, GluN2B-NMDARs have emerged as primary mediators of altered synaptic plasticity and neurotoxicity. Memantine and its successor, NitroMemantine, are efficient at blocking or reversing the deleterious actions of Aβo largely due to their selectivity for extrasynaptic NMDARs. Recently, Aβo were shown to trigger astrocytic release of glutamate to the extrasynaptic space where it activates NMDARs to promote further Aβ production and synaptic depression. Combined with the reciprocal regulation between neuronal activity and Aβ production, extrasynaptic glutamate release adds to a maladaptive model and ultimately results in synaptotoxicity and neurodegeneration of AD. Extrasynaptic NMDAR antagonists remain as a promising therapeutic avenue by interfering with this cascade.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app