Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Prolonged exposure to (R)-bicalutamide generates a LNCaP subclone with alteration of mitochondrial genome.

Advanced prostate cancers, initially sensitive to androgen deprivation therapy, frequently progress to the castration-resistant prostate cancer phenotype (CRPC) through mechanisms not yet fully understood. In this study we investigated mitochondrial involvement in the establishment of refractoriness to hormone therapy. Two human prostate cancer cell lines were used, the parental LNCaP and the resistant LNCaP-Rbic, the latter generated after continuous exposure to 20 μM of (R)-bicalutamide, the active enantiomer of Casodex®. We observed a significant decrease in mtDNA content and a lower expression of 8 mitochondria-encoded gene transcripts involved in respiratory chain complexes in both cell lines. We also found that (R)-bicalutamide differentially modulated dynamin-related protein (Drp-1) expression in LNCaP and LNCaP-Rbic cells. These data seem to indicate that the androgen-independent phenotype in our experimental model was due, at least in part, to alterations in mitochondrial dynamics and to a breakdown in the Drp-1-mediated mitochondrial network.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app