Add like
Add dislike
Add to saved papers

Intimate associations between the endogenous opiate systems and the growth hormone-releasing hormone system in the human hypothalamus.

Neuroscience 2014 January 32
Although it is a general consensus that opioids modulate growth, the mechanism of this phenomenon is largely unknown. Since endogenous opiates use the same receptor family as morphine, these peptides may be one of the key regulators of growth in humans by impacting growth hormone (GH) secretion, either directly, or indirectly, via growth hormone-releasing hormone (GHRH) release. However, the exact mechanism of this regulation has not been elucidated yet. In the present study we identified close juxtapositions between the enkephalinergic/endorphinergic/dynorphinergic axonal varicosities and GHRH-immunoreactive (IR) perikarya in the human hypothalamus. Due to the long post mortem period electron microscopy could not be utilized to detect the presence of synapses between the enkephalinergic/endorphinergic/dynorphinergic and GHRH neurons. Therefore, we used light microscopic double-label immunocytochemistry to identify putative juxtapositions between these systems. Our findings revealed that the majority of the GHRH-IR perikarya formed intimate associations with enkephalinergic axonal varicosities in the infundibular nucleus/median eminence, while endorphinergic-GHRH juxtapositions were much less frequent. In contrast, no significant dynorphinergic-GHRH associations were detected. The density of the abutting enkephalinergic fibers on the surface of the GHRH perikarya suggests that these juxtapositions may be functional synapses and may represent the morphological substrate of the impact of enkephalin on growth. The small number of GHRH neurons innervated by the endorphin and dynorphin systems indicates significant differences between the regulatory roles of endogenous opiates on growth in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app