Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A reporter assay for the next generation of biomaterials: porous-wall hollow glass microspheres.

Laryngoscope 2014 June
OBJECTIVES/HYPOTHESIS: The primary objective was to design a reporter assay to measure molecular release kinetics from a new porous-wall hollow glass microsphere biomaterial with great potential in regenerative medicine and drug delivery. Second, future avenues for research will be discussed specifically in regard to potential clinical uses in laryngology.

STUDY DESIGN: Basic science data report.

METHODS: We developed an assay using fluorescent nanocrystals or quantum dots (Qdot 605) as a reporter. A Nuance FX multispectral imaging system was used to detect fluorescence in aqueous phase. Spectral output of known concentrations of aqueous Qdot 605 was measured by the Nuance system to create a standard curve.

RESULTS: These data were plotted and fit to a curve. Qdot 605 emission demonstrates excellent correlation with concentration in a log-log relationship [R(2) = 0.99649, median error = 9.9%], indicating that the Qdot 605 assay is reliable and should be explored regarding its ability to evaluate the drug-eluting properties of this material.

CONCLUSIONS: We have derived a method to measure Qdot concentration using fluorescent microscopy, which will facilitate future research on this exciting new biomaterial. This material has great potential for use in head and neck surgery. Specific avenues within laryngology to be investigated include laryngeal and tracheal reconstruction, vocal fold healing, and nerve regeneration. Furthermore, we believe this is the first documented use of the Nuance system to determine aqueous molecular concentrations.

LEVEL OF EVIDENCE: NA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app