Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of enamel and dentine thickness on laser Doppler blood-flow signals recorded from the underlying pulp cavity in human teeth in vitro.

OBJECTIVE: To determine the effect of enamel and dentine thickness on laser Doppler blood-flow (LDF) signals recorded from dental pulp.

DESIGN: Observations were made on 18 human premolars that had been extracted from young patients during orthodontic treatment. The apical 2/3 of the root was cut off and the remaining pulp removed. Blood flow signals were recorded from the buccal surface of the crown with a laser Doppler flow metre while dilute blood was pumped at 10 ml/min. through a cannula inserted into the pulp cavity. Recordings were made from the enamel surface and at 0.5 mm steps through the enamel and dentine.

RESULTS: The blood flow signal increased significantly as the cavity depth increased and at 2.0 mm, the median flux signal was more than ten times greater than that obtained on the enamel surface. The backscattered light intensity did not change with cavity depth.

CONCLUSION: When recording pulpal blood flow from a human tooth with a laser Doppler flow metre, a substantially better signal-to-noise ratio should be obtained by placing the probe on dentine in the floor of a cavity than on the enamel surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app