Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cu(II)-disulfide complexes display simultaneous superoxide dismutase- and catalase-like activities.

Superoxide is a potentially toxic by-product of cellular metabolism. We have addressed here the in vitro ability of complexes formed between copper(II) ions and various biologically-occurring disulfides (RSSR: oxidized glutathione, cystine, homocystine and α-lipoic acid) to react with superoxide. The studied complexes were found to react with superoxide (generated by a xanthine/xanthine oxidase system) at rate constants (kCu(II)-RSSR) close to 10(6)M(-1)s(-1), which are three orders of magnitude lower than that reported for superoxide dismutase (SOD) but comparable to that of several other copper-containing complexes reported as SOD mimetics. The interaction between the tested Cu(II)-RSSR and superoxide, led to the generation and recovery of concentrations of hydrogen peroxide and oxygen that were, respectively, below and above those theoretically-expected from a sole SOD mimetic action. Interestingly, oxygen was generated when the Cu(II)-RSSR complexes were directly incubated with hydrogen peroxide. Taken together, these results reveal that the Cu(II)-RSSR complexes not only have the capacity to dismutate superoxide but also to simultaneously act like catalase mimetic molecules. When added to superoxide-overproducing mitochondria (condition attained by its exposure to diclofenac), three of the tested complexes were able (2-4μM), not only to totally restore, but also to lower below the basal level the mitochondrial production of superoxide. The present study is first in reporting on the potential of Cu(II)-disulfide complexes to act as SOD and catalase like molecules, suggesting a potential for these types of molecules to act as such under physiological and/or oxidative-stress conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app