Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Functional evaluation of autism-associated mutations in NHE9.

NHE9 (SLC9A9) is an endosomal cation/proton antiporter with orthologues in yeast and bacteria. Rare, missense substitutions in NHE9 are genetically linked with autism but have not been functionally evaluated. Here we use evolutionary conservation analysis to build a model structure of NHE9 based on the crystal structure of bacterial NhaA and use it to screen autism-associated variants in the human population first by phenotype complementation in yeast, followed by functional analysis in primary cortical astrocytes from mouse. NHE9-GFP localizes to recycling endosomes, where it significantly alkalinizes luminal pH, elevates uptake of transferrin and the neurotransmitter glutamate, and stabilizes surface expression of transferrin receptor and GLAST transporter. In contrast, autism-associated variants L236S, S438P and V176I lack function in astrocytes. Thus, we establish a neurobiological cell model of a candidate gene in autism. Loss-of-function mutations in NHE9 may contribute to autistic phenotype by modulating synaptic membrane protein expression and neurotransmitter clearance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app