Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion.

The rodent medial prefrontal cortex (mPFC) is critical for spatial working memory (SWM), but the underlying neural processes are incompletely understood. During SWM tasks, neural activity in the mPFC becomes synchronized with theta oscillations in the hippocampus, and the strength of hippocampal-prefrontal synchrony is correlated with behavioral performance. However, to what extent the mPFC generates theta oscillations and whether they are also modulated by SWM remains unclear. Furthermore, it is not known how theta oscillations in the mPFC are synchronized with theta oscillations in the hippocampus. Although the ventral hippocampus (vHPC) projects directly to the mPFC, previous studies have only examined synchrony between the mPFC and the dorsal hippocampus (dHPC), with which it is not directly connected. To address these issues, we recorded simultaneously from the dHPC, vHPC, and mPFC of mice performing a SWM task in a T-maze. The local field potential recorded in the mPFC displayed robust theta oscillations that were reflected in local measures of neuronal activity and modulated by SWM performance. mPFC theta oscillations were also synchronized with theta oscillations in both the vHPC and dHPC, and the magnitude of theta synchrony was modulated by SWM. Removing the influence of the vHPC either computationally (through partial correlations) or experimentally (through pharmacological inactivation) reduced theta synchrony between the mPFC and dHPC. These results reveal theta oscillations as a prominent feature of neural activity in the mPFC and a candidate neural mechanism underlying SWM. Furthermore, our results suggest that the vHPC plays a major role in synchronizing theta oscillations in the mPFC and the hippocampus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app