Add like
Add dislike
Add to saved papers

Altered phospholipid molecular species and glycolipid composition in brain, liver and fibroblasts of Zellweger syndrome.

Neuroscience Letters 2013 September 28
We studied the altered molecular species of lipids in brain and liver tissues, and fibroblasts from patients with Zellweger syndrome (ZS). ZS cerebellum samples contained a higher amount of sphingomyelin with shorter chain fatty acids compared to that in normal controls. The amount of phosphatidylethanolamine (PE) was less than half of that in controls, with the absence of the PE-type of plasmalogen. Gangliosides were accumulated in the brains and fibroblasts of ZS patients. To investigate whether or not impaired beta-oxidation of very long chain fatty acids and/or plasmalogen synthesis affects glycolipids metabolism, RNAi of peroxisomal acylCo-A oxidase (ACOX1) and glyceronephosphate O-acyltransferase (GNPAT) was performed using cultured neural cells. In neuronal F3-Ngn1 cells, ACOX1 and GNPAT silencing up-regulated ceramide galactosyltransferase (UGT8) mRNA expression, and down-regulated UDP-glucose ceramide glucosyltransferase (UGCG). These results suggest that both impaired beta-oxidation of very long chain fatty acids and plasmalogen synthesis affect glycolipid metabolism in neuronal cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app