Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Adsorption of proteins at physiological concentrations on pegylated surfaces and the compatibilizing role of adsorbed albumin with respect to other proteins according to optical waveguide lightmode spectroscopy (OWLS).

In literature, contacts between pegylated compounds and blood proteins are generally discussed in terms of excluded volume-related repulsions although adsorption and compatibility have been reported for some of these proteins occasionally. The major problem to investigate the behavior of blood in contact with pegylated surfaces is the complexity of the medium and especially the presence of albumin in large excess. In a model approach, optical waveguide lightmode spectroscopy (OWLS) was used to monitor the fate of albumin, fibrinogen, and γ-globulins at physiological concentrations in pH = 7.4 isotonic HEPES buffer after contact with SiTiO2 chips coated with diblock poly(DL-lactic acid)-block-poly(ethylene oxide)s and triblock poly(DL-lactic acid)-block-poly(ethylene oxide)-block-poly(DL-lactic acid) copolymers. Corresponding homopolymers were used as controls. The three protein systems were investigated separately, as a mixture and when added successively according to different orders of addition. OWLS gave access to the mass and the thickness of adhering protein layers that resist washing with HEPES buffer. Protein depositions were detected regardless of the presence of poly(ethylene glycol) segments on surfaces. Adsorption depended on the protein, on the surface and also on the presence of the other proteins. Unexpectedly any surface coated with a layer of adsorbed albumin prevented deposition of other proteins, including albumin itself. This outstanding finding suggests that it was the presence of albumin adsorbed on a surface, pegylated or not, that made that surface compatible with other proteins. As a consequence, dipping a device to be in contact with the blood of a patient in a solution of albumin could be a very simple means to avoid further protein deposition and maybe platelets adhesion after in vivo implantation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app