Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Diversity of the chlorite dismutase gene in low and high organic carbon rhizosphere soil colonized by perchlorate-reducing bacteria.

Chlorite dismutase (cld) is an essential enzyme in the biodegradation of perchlorate. The objective of this study was to determine the change in sequence diversity of the cld gene, and universal bacterial 16S rRNA genes, in soil samples under varying conditions of organic carbon, bioaugmentation, and plant influence. The cld gene diversity was not different between high organic carbon (HOC) and low organic carbon (LOC) soil. Combining results from HOC and LOC soil, diversity of the cld gene was decreased in soil that had been bioaugmented or planted. However, with both bioaugmentation and planting the cld diversity was not decreased. These observations were repeated when focusing on LOC soil. However, in HOC soil the cld diversity was not affected by reactor treatment. General bacterial diversity as measured with 16S rRNA was significantly greater in HOC soil than in LOC soil, but no significant difference was observed between reference soil and planted or bioaugmented soil. Different sequences of the cld gene occur in different species of microorganisms. In LOC soil, combining bioaugmentation and planting results in a highly diverse population of perchlorate degraders. This diverse population will be more resilient and is desirable where perchlorate reduction is a critical remediation process. Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app