Comparative Study
Controlled Clinical Trial
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Impaired cardiometabolic responses to glucagon-like peptide 1 in obesity and type 2 diabetes mellitus.

Glucagon-like peptide 1 (GLP-1) has insulin-like effects on myocardial glucose uptake which may contribute to its beneficial effects in the setting of myocardial ischemia. Whether these effects are different in the setting of obesity or type 2 diabetes (T2DM) requires investigation. We examined the cardiometabolic actions of GLP-1 (7-36) in lean and obese/T2DM humans, and in lean and obese Ossabaw swine. GLP-1 significantly augmented myocardial glucose uptake under resting conditions in lean humans, but this effect was impaired in T2DM. This observation was confirmed and extended in swine, where GLP-1 effects to augment myocardial glucose uptake during exercise were seen in lean but not in obese swine. GLP-1 did not increase myocardial oxygen consumption or blood flow in humans or in swine. Impaired myocardial responsiveness to GLP-1 in obesity was not associated with any apparent alterations in myocardial or coronary GLP1-R expression. No evidence for GLP-1-mediated activation of cAMP/PKA or AMPK signaling in lean or obese hearts was observed. GLP-1 treatment augmented p38-MAPK activity in lean, but not obese cardiac tissue. Taken together, these data provide novel evidence indicating that the cardiometabolic effects of GLP-1 are attenuated in obesity and T2DM, via mechanisms that may involve impaired p38-MAPK signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app