Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Type 1 interferons inhibit myotube formation independently of upregulation of interferon-stimulated gene 15.

INTRODUCTION: Type 1 interferon (IFN)-inducible genes and their inducible products are upregulated in dermatomyositis muscle. Of these, IFN-stimulated gene 15 (ISG15) is one of the most upregulated, suggesting its possible involvement in the pathogenesis of this disease. To test this postulate, we developed a model of type 1 IFN mediated myotube toxicity and assessed whether or not downregulation of ISG15 expression prevents this toxicity.

METHODS: Mouse myoblasts (C2C12 cell line) were cultured in the presence of type 1 or type 2 IFNs and ISG15 expression assessed by microarray analysis. The morphology of newly formed myotubes was assessed by measuring their length, diameter, and area on micrographs using imaging software. ISG15 expression was silenced through transfection with small interference RNA.

RESULTS: Type 1 IFNs, especially IFN-beta, increased ISG15 expression in C2C12 cells and impaired myotube formation. Silencing of ISG15 resulted in knockdown of ISG15 protein, but without phenotypic rescue of myotube formation.

DISCUSSION: IFN-beta affects myoblast differentiation ability and myotube morphology in vitro.These studies provide evidence that ISG15, which is highly upregulated in dermatomyositis muscle, does not appear to play a key role in IFN-beta-mediated C2C12 myoblast cell fusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app