Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Essential roles of the Kar2/BiP molecular chaperone downstream of the UPR pathway in Cryptococcus neoformans.

The endoplasmic reticulum (ER) is a central hub where secreted or membrane-bound proteins are maturated and folded properly in eukaryotes. Maintenance of ER homeostasis is particularly important for human fungal pathogens, such as Cryptococcus neoformans, which encounter a plethora of host-mediated stresses during infection. Our previous study demonstrated that the unfolded protein response (UPR) pathway, composed of the evolutionarily conserved Ire1 kinase and the unique Hxl1 transcription factor, has pleiotropic roles in ER stress response, thermotolerance, antifungal drug resistance, and virulence in C. neoformans. Here, we functionally characterized an ER-resident molecular chaperone, Kar2/BiP, in C. neoformans. Conditional expression of KAR2 by the copper-regulated promoter revealed that Kar2 is essential for the viability of C. neoformans. Constitutive expression of KAR2 by the strong histone H3 promoter partially restores resistance to ER stress, cell wall stress, thermotolerance, and genotoxic stress in ire1Δ and hxl1Δ mutants, suggesting that Kar2 mainly functions downstream of the UPR pathway. Furthermore, Kar2 appears to control azole resistance in C. neoformans downstream of the UPR pathway without regulation of ERG11 or ERG3. Interestingly, we discovered that azole treatment is sensed as ER-stress and subsequently activates the Ire1-dependent Hxl1 splicing event and induction of KAR2 by the UPR pathway. In contrast, the constitutive expression of Kar2 is not sufficient to restore the Ire1-mediated regulation of capsule production in C. neoformans UPR mutants. In conclusion, this study demonstrates that Kar2 is not only essential for vegetative growth but also required for response and adaptation to the environmental stresses and antifungal drugs downstream of the UPR pathway in C. neoformans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app