Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Interdependence of the volume and stress ensembles and equipartition in statistical mechanics of granular systems.

Physical Review Letters 2012 December 8
We discuss the statistical mechanics of granular matter and derive several significant results. First, we show that, contrary to common belief, the volume and stress ensembles are interdependent, necessitating the use of both. We use the combined ensemble to calculate explicitly expectation values of structural and stress-related quantities for two-dimensional systems. We thence demonstrate that structural properties may depend on the angoricity tensor and that stress-based quantities may depend on the compactivity. This calls into question previous statistical mechanical analyses of static granular systems and related derivations of expectation values. Second, we establish the existence of an intriguing equipartition principle-the total volume is shared equally amongst both structural and stress-related degrees of freedom. Third, we derive an expression for the compactivity that makes it possible to quantify it from macroscopic measurements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app