Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

The effect of IGF-I on anatomically shaped tissue-engineered menisci.

This study investigates the effect of insulin-like growth factor (IGF)-I on the development of anatomically-shaped alginate menisci seeded with meniscal fibrochondrocytes. To accomplish this, bovine meniscal fibrochondrocytes were seeded into 2% w/v alginate, crosslinked with calcium sulfate, and injected into anatomical molds derived from microcomputed tomography scans. The meniscal constructs were then cultured for up to 4 weeks with or without 100 ng/mL IGF-I supplemented in the media. Histological, immunohistological, biochemical, and mechanical analyses were performed to characterize tissue development, accumulation and localization of extracellular matrix, and mechanical properties. After 4 weeks of culture, IGF-I treatment significantly improved mechanical and biochemical properties, while maintaining DNA content, with a 26-fold increase in glycosaminoglycan (GAG) content and 10-fold increase in collagen content compared to 0-week controls, and a 3-fold increase in the equilibrium modulus at 2 weeks compared to controls. IGF-I-treated menisci had ∼60% of the GAG content of native tissue and the compressive equilibrium modulus matched native properties by 2 weeks of culture. Further, IGF-I-treated menisci developed a distinct surface layer similar to native tissue with elongated cells and collagen fibers aligned parallel to the surface, the presence of types I and II collagen, and accumulation of lubricin. This study demonstrates that IGF-I treatment can greatly increase the mechanical and biochemical properties of engineered tissues and aid in the development of a distinct surface zone similar to the superficial zone of native menisci.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app