Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures.

ACS Nano 2012 December 22
Ultralow-threshold two-photon pumped amplified spontaneous emission (2ASE) and lasing in seeded CdSe/CdS nanodot/nanorod heterostructures is demonstrated for the first time. Such heterostructures allow the independent tunability of the two-photon absorption (2PA) cross-section (σ(2)) through varying the CdS rod size, and that of the emission wavelength through varying the CdSe dot size. With an enhanced σ(2), 2ASE in these heterostructures is achieved with an ultralow threshold fluence of ~1.5 mJ/cm(2), which is as much as one order less than that required for spherical semiconductor NCs. Importantly, by exploiting this unique property of the seeded nanorods exhibiting strong quantum confinement even at relatively large rod sizes, a near reciprocal relation between the 2ASE threshold and the 2PA action cross-section (σ(2)η) (where η is the quantum yield) was found and validated over a wide volume range for II-VI semiconductor nanostructures. Ultrafast optical spectroscopy verified that while the Auger processes in these heterostructures are indeed suppressed, ASE in these samples could also be strongly affected by a fast hole-trapping process to the NR surface states. Lastly, to exemplify the potential of these seeded CdSe/CdS nanodot/nanorod heterostructures as a viable gain media for achieving two-photon lasing, a highly photostable microsphere laser with an ultralow pump threshold is showcased.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app