Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment.

Adherence of proteins, cells, and microorganisms to the surface of venous catheters contributes to catheter occlusion, venous thrombosis, thrombotic embolism, and infections. These complications lengthen hospital stays and increase patient morbidity and mortality. Current technologies for inhibiting these complications are limited in duration of efficacy and may induce adverse side effects. To prevent complications over the life span of a device without using active drugs, we modified a catheter with the nonleaching polymeric sulfobetaine (polySB), which coordinates water molecules to the catheter surface. The modified surface effectively reduced protein, mammalian cell, and microbial attachment in vitro and in vivo. Relative to commercial catheters, polySB-modified catheters exposed to human blood in vitro had a >98% reduction in the attachment and a significant reduction in activation of platelets, lymphocytes, monocytes, and neutrophils. Additionally, the accumulation of thrombotic material on the catheter surface was reduced by >99% even after catheters were exposed to serum in vitro for 60 days. In vivo, in a highly thrombogenic canine model, device- and vessel-associated thrombus was reduced by 99%. In vitro adherence of a broad spectrum of microorganisms was reduced on both the external and the internal surfaces of polySB-modified catheters compared to unmodified catheters. When unmodified and polySB-modified catheters were exposed to the same bacterial challenge and implanted into animals, 50% less inflammation and fewer bacteria were associated with polySB-modified catheters. This nonleaching, polySB-modified catheter could have a major impact on reducing thrombosis and infection, thus improving patient health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app