Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fluorescent polymer nanoparticle for selective sensing of intracellular hydrogen peroxide.

ACS Nano 2012 October 24
Fluorescent boronate-modified polyacrylonitrile (BPAN) nanoparticles of 50 nm diameter were fabricated for use as a selective H(2)O(2) sensor. The fluorescence intensity changed and an emission peak shifted when BPAN nanoparticles selectively interacted with H(2)O(2), relative to other reactive oxygen species (ROS). The BPAN nanoparticles undergo photoinduced electron transfer (PET) between a Schiff base moiety and boronate, which enhances the fluorescence and makes the nanoparticles suitable for selective ROS recognition. We demonstrate the use of these nanoparticles as a detector of endogenous H(2)O(2) produced in living cells. The representative features of the fluorescent BPAN nanoparticles that make them particularly attractive for H(2)O(2) and ROS detection are the following: they are easily synthesized as PET sensors; they exhibit a characteristic emission peak and peak shift that distinguishes reaction with H(2)O(2) from other ROS; and compared to organic compounds, the sensing moiety on BPAN polymer nanoparticles is more thermally stable and has superior mechanical properties, enabling their use in various biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app