Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

In vivo repair of alkylating and oxidative DNA damage in the mitochondrial and nuclear genomes of wild-type and glycosylase-deficient Caenorhabditis elegans.

DNA Repair 2012 November 2
Base excision repair (BER) is an evolutionarily conserved DNA repair pathway that is critical for repair of many of the most common types of DNA damage generated both by endogenous metabolic pathways and exposure to exogenous stressors such as pollutants. Caenorhabditis elegans is an increasingly important model organism for the study of DNA damage-related processes including DNA repair, genotoxicity, and apoptosis, but BER is not well understood in this organism, and has not previously been measured in vivo. We report robust BER in the nuclear genome and slightly slower damage removal from the mitochondrial genome; in both cases the removal rates are comparable to those observed in mammals. However we could detect no deficiency in BER in the nth-1 strain, which carries a deletion in the only glycosylase yet described in C. elegans that repairs oxidative DNA damage. We also failed to detect increased lethality or growth inhibition in nth-1 nematodes after exposure to oxidative or alkylating damage, suggesting the existence of at least one additional as-yet undetected glycosylase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app