Add like
Add dislike
Add to saved papers

Monitoring of erectile and urethral sphincter dysfunctions in a rat model mimicking radical prostatectomy damage.

INTRODUCTION: Animal models of urinary incontinence and erectile dysfunction following radical prostatectomy (RP) are lacking.

AIMS: To develop an animal model of combined post-RP urethral sphincter and erectile dysfunctions, and noninvasive methods to assess erectile function (EF) and urinary sphincter function (USF) during prolonged follow-up.

METHODS: In the main experiments, 60 male Sprague Dawley rats were randomized to a sham operation (N = 30) or electrocautery of both sides of the striated urethral sphincter (N = 30). EF and USF were evaluated preoperatively and on postoperative days 7, 15, 30, 60, and 90. Sphincter and penile tissue samples were evaluated histologically on days 7 (N = 10) and 30 (N = 10) to detect apoptosis (TUNEL assays) and fibrosis (Trichrome Masson staining).

MAIN OUTCOME MEASURES: To assess EF, we measured systemic and penile blood flow using penile laser Doppler and penile rigidity using a durometer before and after apomorphine injection. USF was assessed based on the retrograde leak point pressure (LPPr).

RESULTS: Apomorphine increased baseline Doppler flow by 180% (95% confidence interval, 156-202%) and penile hardness from 3.49 ± 0.5 to 7.16 ± 0.82 Shore A units but did not change systemic arterial flow. Mean LPPr was 76.8 ± 6.18 mm Hg at baseline and decreased by 50% after injury, with no response to apomorphine on day 7. EF and USF impairments persisted up to 90 days post injury. Histology showed penile apoptosis on day 7 and extensive urethral sphincter and penile fibrosis on day 30. Our data did not allow us to determine whether the impairment in erectile response to apomorphine preponderantly reflected arterial penile insufficiency or veno-occlusive dysfunction.

CONCLUSION: Electrocautery of the striated urethral sphincter caused severe and lasting impairment of EF and USF that could be monitored repeatedly using minimally invasive methods. This new animal model may hold potential for developing new treatments designed to correct post-RP impairments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app