Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Exercise preconditioning provides early cardioprotection against exhaustive exercise in rats: potential involvement of protein kinase C delta translocation.

The objective of this study was to investigate the early cardioprotective effect of exercise preconditioning (EP) on the exhaustive exercise-induced myocardial injury in rats and the role of protein kinase C delta isoform (PKCδ) in EP. Rats were subjected to run on the treadmill for four periods of 10 min each at 30 m/min with intervening periods of rest of 10 min as an EP protocol. The exhaustive exercise was performed 0.5 h after EP. PKC inhibitor chelerythrine (CHE) was injected before EP. Our results showed that EP markedly attenuated the exhaustive exercise-induced myocardial ischemia/hypoxia, ultrastructural damage, high serum cTnI, and NT-proBNP levels. CHE injection before EP did not abolish the protection of EP. Both exhaustive exercise and EP produced a significant increase in PKCδ and p-PKCδ(Thr507) protein levels in cardiomyocytes. However, the immunostaining of p-PKCδ(Thr507) in EP cardiomyocytes was primarily localized to intercalated disks and nuclei while the exhaustive exercise-induced high level p-PKCδ(Thr507) was mainly distributed in the cytoplasm. Moreover, the high PKCδ and p-PKCδ(Thr507) levels in exhaustive exercise were significantly down-regulated by EP. CHE did not attenuate the expressions of PKCδ and p-PKCδ(Thr507). These results indicate that an appropriate activation and translocation of PKCδ may represent a mechanism whereby EP can exert an early cardioprotection against exhaustive exercise-induced myocardial injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app