Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Specific amino acids affecting Drosophila melanogaster prophenoloxidase activity in vitro.

Insect prophenoloxidase (PPO) is a key enzyme that induces melanization around invading pathogens and at wounds to prevent further infection. Drosophila melanogaster has three PPO genes which have different biochemical properties following over-expression in S2 cells. As shown by automatic melanization of S2 cells, recombinant PPO3 (rPPO3) became activated upon Cu(2+) addition (Cu(2+)-aided cells melanization without ethanol activation and substrate addition: +Cu(2+); -DOPA, -Ethanol). The exact reasons for this phenomenon are still unknown. In this study, using site-directed mutagenesis and over-expression methods, we found that the place holder, two independent amino acids (equal to Manduca sexta amino acid residues: F218 and S393 in MsPPO1, F224 and E395 in MsPPO2) in the active site pocket and a missing fragment (similar to (565)RPGDPGT(571) in MsPPO1 and (571)QGSDPRR(577) in MsPPO2) at the C-terminus of PPO3, affect rPPO3-S2 cells Cu(2+)-aided auto-melanization. Some mutations nearly rescued rPPO3 Cu(2+)-aided auto-activation, which suggests that the auto-activation of wild type rPPO3 was not due to cleavage by serine proteases. We also found that the corresponding amino acids in the active site pocket have similar effect on PPO1 as on PPO3. PPO1 staining activity (Cu(2+) added or not during PPO transfection; cells melanized after ethanol activation and substrate addition: ±Cu(2+); +DOPA, +Ethanol) has a positive relationship with the active site pocket size as does rPPO3. The fragment of rPPO1 corresponding to the one missing from the C-terminus of PPO3 has no influence on rPPO1 staining activity after it is deleted. However, the staining activities of rPPO2 mutants decreased after deletion of those corresponding amino acid sequences. When the corresponding fragments from PPO1 or PPO2 were inserted into PPO3, the mutant rPPO3 had no influence on staining activity, but had a significantly lowered Cu(2+)-aided auto-activation. Thus, we found that some amino acids are important for rPPO3 Cu(2+)-aided auto-activation as well as PPO staining activity in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app