Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Low-cost three-dimensional imaging system combining fluorescence and ultrasound.

In this paper, we present a dual-modality imaging system combining three-dimensional (3D) continuous-wave transillumination fluorescence tomography with 3D ultrasound (US) imaging. We validated the system with two phantoms, one containing fluorescent inclusions (Cy5.5) at different depths, and another varying-thickness semicylindrical phantom. Using raster scanning, the combined fluorescence/US system was used to collect the boundary fluorescent emission in the X-Y plane, as well as recovered the 3D surface and position of the inclusions from US signals. US images were segmented to provide soft priors for the fluorescence image reconstruction. Phantom results demonstrated that with priors derived from the US images, the fluorescent reconstruction quality was significantly improved. As further evaluation, we show pilot in vivo results using an Apo-E mouse to assess the feasibility and performance of this system in animal studies. Limitations and potential to be used in artherosclerosis studies are then discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app