Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

NFAT regulates the expression of AIF-1 and IRT-1: yin and yang splice variants of neointima formation and atherosclerosis.

AIMS: Alternative transcription and splicing of the allograft inflammatory factor-1 (AIF-1) gene results in the expression of two different proteins: AIF-1 and interferon responsive transcript-1 (IRT-1).  Here, we explore the impact of AIF-1 and IRT-1 on vascular smooth muscle cell (VSMC) activation and neointima formation, the mechanisms underlying their alternative splicing, and associations of AIF-1 and IRT-1 mRNA with parameters defining human atherosclerotic plaque phenotype.

METHODS AND RESULTS: Translation of AIF-1 and IRT-1 results in different products with contrasting cellular distribution and functions. Overexpression of AIF-1 stimulates migration and proliferation of human VSMCs, whereas IRT-1 exerts opposite effects. Adenoviral infection of angioplasty-injured rat carotid arteries with AdAIF-1 exacerbates intima hyperplasia, whereas infection with AdIRT-1 reduces neointima. Expression of these variants is modulated by changes in nuclear factor of activated T-cells (NFAT) activity.  Pharmacological inhibition of NFAT or targeting of NFATc3 with small interfering RNA (siRNA) lowers the AIF-1/IRT-1 ratio and favours an anti-proliferative outcome.  NFAT acts as a repressor on the IRT-1 transcriptional start site, which is also sensitive to interferon-γ stimulation. Expression of AIF-1 mRNA in human carotid plaques associates with less extracellular matrix and a more pro-inflammatory plaque and plasma profile, features that may predispose to plaque rupture. In contrast, expression of IRT-1 mRNA associates with a less aggressive phenotype and less VSMCs at the most stenotic region of the plaque.

CONCLUSION: Inhibition of NFAT signalling, by shifting the AIF-1/IRT-1 ratio, may be an attractive target to regulate the VSMC response to injury and manipulate plaque stability in atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app