Add like
Add dislike
Add to saved papers

Cobalt-phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes.

BiVO(4) semiconductor electrodes were coupled with cobalt-phosphate complexes (CoPi) to enhance the photoelectrochemical (PEC) performance for water oxidation reaction. CoPi was deposited on a 550 nm-thick BiVO(4) film via electrodeposition (ED) and photodeposition (PD) methods for comparison of their effects. The CoPi on BiVO(4) exhibited Co : P atomic ratios of approximately 1 : 7 for the electrodeposited sample and approximately 1 : 18 for the photodeposited sample, and Co(2+) and Co(3+) co-existed in both samples. Optimized CoPi ED resulted in a CoPi overlayer of approximately 850 nm thick, which showed an electrochromic-like behavior that was likely due to limited access of phosphate into BiVO(4) across the CoPi layer. Optimized CoPi PD, however, had very thin and rather uniform CoPi dispersion and did not show electrochromic-like behavior. Despite the lesser amount of CoPi, the PEC performance of BiVO(4)/CoPi (PD) was comparable to that of BiVO(4)/CoPi (ED). Real-time measurements of the headspace molecular oxygen that evolved from water oxidation indicated that CoPi enhances O(2) production and photocurrent generation at BiVO(4) by a factor of around 15 and a maximum of 20, respectively, at 0.576 V(SCE) (equivalent to 1.23 V(RHE)) under air mass 1.5 irradiation (400 mW cm(-2)). Prolonged irradiation of BiVO(4)/CoPi (ED) resulted in a reduced Co : P ratio to 1 : 1.77 without changing the mixed valency of Co(II/III). This finding indicates that incorporation of phosphate into the CoPi was kinetically slower than water oxidation. The primary role of CoPi has been suggested as a hole-conducting electrocatalyst making the photogenerated electrons more mobile and, consequently, increasing conductivity and boosting the PEC water oxidation performance of BiVO(4).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app