Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

hSMG-1 is a granzyme B-associated stress-responsive protein kinase.

Granzyme B plays a key role in cell-mediated programmed cell death. We previously demonstrated that p53 is a functional determinant in the granzyme B-induced cytotoxic T-lymphocyte response. However, the pathways leading to activation of p53 by granzyme B remain incompletely understood. We now demonstrate that granzyme B-induced DNA damage signaling as revealed by histone H2AX phosphorylation and subsequent activation of the stress kinase CHK2. Confocal microscopy analysis indicates that granzyme B treatment of tumor cells induced an early translocation of endonuclease caspase-activated DNase. DNA microarray-based global transcriptional profiling and RT-PCR indeed revealed genes related to DNA damage. Among these genes, hSMG-1, a genotoxic stress-activated protein, was constantly upregulated in tumor cells following granzyme B treatment. Knockdown of the hSMG-1 gene in T1 tumor target cell line resulted in a significant inhibition of granzyme B- and CTL-induced killing. Our data suggest that granzyme B may exert cell death through DNA damage signaling and uncover a novel molecular link between the DNA damage pathway and granzyme B-induced cell death.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app