Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Interference RNA-based silencing of endogenous SMAD4 in porcine granulosa cells resulted in decreased FSH-mediated granulosa cells proliferation and steroidogenesis.

Reproduction 2011 May
FSH plays a critical role in granulosa cell (GC) proliferation and steroidogenesis through modulation by factors including bone morphogenetic proteins family, which belongs to transforming growth factor β (TGFB) superfamily. TGFBs are the key factors in maintaining cell growth and differentiation in ovaries. However, the interaction of FSH and TGFB on the GCs' proliferation and steroidogenesis remains to be elucidated. In this study, we have investigated the role of SMAD4, a core molecule mediating the intracellular TGFB/SMAD signal transduction pathway, in FSH-mediated proliferation and steroidogenesis of porcine GCs. In this study, SMAD4 was knocked down using interference RNA in porcine GCs. Our results showed that SMAD4-siRNA causes specific inhibition of SMAD4 mRNA and protein expression after transfection. Knockdown of SMAD4 significantly inhibited FSH-induced porcine GC proliferation and estradiol production and changed the expression of cyclin D2, CDK2, CDK4, CYP19a1, and CYP11a1. Thus, these observations establish an important role of SMAD4 in the regulation of the response of porcine GCs to FSH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app