Add like
Add dislike
Add to saved papers

Neuroprotection of taurine against bilirubin-induced elevation of apoptosis and intracellular free calcium ion in vivo.

Previous work has shown that taurine protected neurons against unconjugated bilirubin (UCB)-induced neurotoxicity by preventing cell apoptosis and maintaining intracellular Ca²⁺ homeostasis in primary neuron culture. This study investigates the neurotoxicity of hyperbilirubinemia and neuroprotection of taurine in a clinically relevant murine model in vivo. A hyperbilirubinemia baby mice model was established by intraperitoneal injection with UCB. After 24 h, the neural apoptotic level, transcriptional activity of caspase-3, and iCa²⁺ concentration were detected. It was found that UCB injection significantly increased both intracellular free Ca²⁺ concentrations and the activities of proapoptosis protease caspase-3, which is related to the elevation of neural apoptosis level. When baby mice were pretreated with 7.5 or 15 mg/kg body weight (bw) taurine for 4 h and then exposed to UCB, apoptotic death was significantly attenuated through down-regulation of activity of caspase-3 and i[Ca²⁺] in the brain. From these observations, it was concluded that taurine limits bilirubin-induced neural damage by inhibiting iCa²⁺ overload as well as decreasing activation of proapoptotic proteases caspase-3. This study might contribute to the development of taurine as a broad-spectrum agent for preventing and/or treating neural damage in neonatal jaundice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app